Efficient Two-Party Password-Based Key Exchange Protocols in the UC Framework
نویسندگان
چکیده
Most of the existing password-based authenticated key exchange protocols have proofs either in the indistinguishability-based security model of Bellare, Pointcheval, and Rogaway (BPR) or in the simulation-based of Boyko, MacKenzie, and Patel (BMP). Though these models provide a security level that is sufficient for most applications, they fail to consider some realistic scenarios such as participants running the protocol with different but possibly related passwords. To overcome these deficiencies, Canetti et al. proposed a new security model in the universal composability (UC) framework which makes no assumption on the distribution on passwords used by the protocol participants. They also proposed a new protocol, but, unfortunately, the latter is not as efficient as some of the existing protocols in BPR and BMP models. In this paper, we investigate whether some of the existing protocols that were proven secure in BPR and BMP models can also be proven secure in the new UC model and we answer this question in the affirmative. More precisely, we show that the protocol by Bresson, Chevassut, and Pointcheval (BCP) in CCS 2003 is also secure in the new UC model. The proof of security relies in the random-oracle and ideal-cipher models and works even in the presence of adaptive adversaries, capable of corrupting players at any time and learning their internal states.
منابع مشابه
Removing Erasures with Explainable Hash Proof Systems
An important problem in secure multi-party computation is the design of protocols that can tolerate adversaries that are capable of corrupting parties dynamically and learning their internal states. In this paper, we make significant progress in this area in the context of password-authenticated key exchange (PAKE) and oblivious transfer (OT) protocols. More precisely, we first revisit the noti...
متن کاملEfficient Password Authenticated Key Exchange via Oblivious Transfer
We present a new framework for constructing efficient password authenticated key exchange (PAKE) protocols based on oblivious transfer (OT). Using this framework, we obtain: – an efficient and simple UC-secure PAKE protocol that is secure against adaptive corruptions without erasures. – efficient and simple PAKE protocols under the Computational DiffieHellman (CDH) assumption and the hardness o...
متن کاملCredential Authenticated Identification and Key Exchange
Secure two-party authentication and key exchange are fundamental problems. Traditionally, the parties authenticate each other by means of their identities, using a public-key infrastucture (PKI). However, this is not always feasible or desirable: an appropriate PKI may not be available, or the parties may want to remain anonymous, and not reveal their identities. To address these needs, we intr...
متن کاملA New Ring-Based SPHF and PAKE Protocol On Ideal Lattices
emph{ Smooth Projective Hash Functions } ( SPHFs ) as a specific pattern of zero knowledge proof system are fundamental tools to build many efficient cryptographic schemes and protocols. As an application of SPHFs, emph { Password - Based Authenticated Key Exchange } ( PAKE ) protocol is well-studied area in the last few years. In 2009, Katz and Vaikuntanathan described the first lattice-based ...
متن کاملInteractive Diffie-Hellman Assumptions with Applications to Password-Based Authentication
The area of password-based authenticated key exchange protocols has been the subject of a vast amount of work in the last few years due to its practical aspects. In these protocols, the goal is to enable users communicating over an unreliable channel to establish a secure session key even when the secret key that they share is drawn from a small set of values. Despite the attention given to it,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008